Essential knowledge 1.A.1 : Natural selection is a major mechanism of evolution.	Essential knowledge 1.A.4 : Biological evolution is supported by scientific evidence from many disciplines, including mathematics.
Essential knowledge 1.A.2 : Natural selection acts on phenotypic variations in populations.	Essential knowledge 1.B.1 : Organisms share many conserved core processes and features that evolved and are widely distributed among organisms today.
Essential knowledge 1.A.3 : Evolutionary change is also driven by random processes.	Essential knowledge 1.B.2 : Phylogenetic trees and cladograms are graphical representations (models) of evolutionary history that can be tested.

Essential knowledge 1.C.1 : Speciation and extinction have occurred throughout the Earth's history.	Essential knowledge 1.D.1 : There are several hypotheses about the natural origin of life on Earth, each with supporting scientific evidence.
Essential knowledge 1.C.2 : Speciation may occur when two populations become reproductively isolated from each other.	Essential knowledge 1.D.2 : Scientific evidence from many different disciplines supports models of the origin of life.
Essential knowledge 1.C.3 : Populations of organisms continue to evolve.	

Essential knowledge 2.A.1: All living systems require constant input of free energy.	Essential knowledge 2.B.1 : Cell membranes are selectively permeable due to their structure.
Essential knowledge 2.A.2 : Organisms capture and store free energy for use in biological processes.	Essential knowledge 2.B.2 : Growth and dynamic homeostasis are maintained by the constant movement of molecules across membranes.
Essential knowledge 2.A.3 : Organisms must exchange matter with the environment to grow, reproduce and maintain organization.	Essential knowledge 2.B.3 : Eukaryotic cells maintain internal membranes that partition the cell into specialized regions.

Essential knowledge 2.C.1 : Organisms use feedback mechanisms to maintain their internal environments and respond to external environmental changes.	Essential knowledge 2.D.2 : Homeostatic mechanisms reflect both common ancestry and divergence due to adaptation in different environments.
Essential knowledge 2.C.2 : Organisms respond to changes in their external environments.	Essential knowledge 2.D.3 : Biological systems are affected by disruptions to their dynamic homeostasis.
Essential knowledge 2.D.1 : All biological systems from cells and organisms to populations, communities and ecosystems are affected by complex biotic and abiotic interactions involving exchange of matter and free energy.	Essential knowledge 2.D.4 : Plants and animals have a variety of chemical defenses against infections that affect dynamic homeostasis.

Essential knowledge 2.E.1:

Timing and coordination of specific events are necessary for the normal development of an organism, and these events are regulated by a variety of mechanisms.

Essential knowledge 2.E.3:

Timing and coordination of behavior are regulated by various mechanisms and are important in natural selection.

Essential knowledge 2.E.2:

Timing and coordination of physiological events are regulated by multiple mechanisms.

Essential knowledge 3.A.1: DNA, and in some cases RNA, is the primary source of heritable information.	Essential knowledge 3.A.4 : The inheritance pattern of many traits cannot be explained by simple Mendelian genetics.
Essential knowledge 3.A.2 : In eukaryotes, heritable information is passed to the next generation via processes that include the cell cycle and mitosis or meiosis plus fertilization.	Essential knowledge 3.B.1 : Gene regulation results in differential gene expression, leading to cell specialization.
Essential knowledge 3.A.3 : The chromosomal basis of inheritance provides an understanding of the pattern of passage (transmission) of genes from parent to offspring.	Essential knowledge 3.B.2 : A variety of intercellular and intracellular signal transmissions mediate gene expression.

Essential knowledge 3.C.1 : Changes in genotype can result in changes in phenotype.	Essential knowledge 3.D.1 : Cell communication processes share common features that reflect a shared evolutionary history.
Essential knowledge 3.C.2 : Biological systems have multiple processes that increase genetic variation.	Essential knowledge 3.D.2 : Cells communicate with each other through direct contact with other cells or from a distance via chemical signaling.
Essential knowledge 3.C.3 : Viral replication results in genetic variation and viral infection can introduce genetic variation into the hosts.	Essential knowledge 3.D.3 : Signal transduction pathways link signal reception with cellular response.

Essential knowledge 3.D.4:

Changes in signal transduction pathways can alter cellular response.

Essential knowledge 3.E.1:

Individuals can act on information and communicate it to others.

Essential knowledge 3.E.2:

Animals have nervous systems that detect external and internal signals, transmit and integrate information, and produce responses.

Essential knowledge 4.A.1: The subcomponents of biological molecules and their sequence determine the properties of that molecule.	Essential knowledge 4.A.4 : Organisms exhibit complex properties due to interactions between their constituent parts.
Essential knowledge 4.A.2 : The structure and function of subcellular components, and their interactions, provide essential cellular processes.	Essential knowledge 4.A.5 : Communities are composed of populations of organisms that interact in complex ways.
Essential knowledge 4.A.3 : Interactions between external stimuli and regulated gene expression result in specialization of cells, tissues and organs.	Essential knowledge 4.A.6 : Interactions among living systems and with their environment result in the movement of matter and energy.

Essential knowledge 4.B.2 :	Essential knowledge 4.C.1 :
Cooperative interactions within	Variation in molecular units
organisms promote efficiency in	provides cells with a wider
the use of energy and matter.	range of functions.
Essential knowledge 4.B.3 : Interactions between and within populations influence patterns of species distribution and abundance.	Essential knowledge 4.C.2 : Environmental factors influence the expression of the genotype in an organism.

Essential knowledge 4.B.1:

Interactions between molecules

affect their structure and function.

Essential knowledge 4.B.4: Distribution of local and global ecosystems changes over time.

Essential knowledge 4.C.3:

The level of variation in a population affects population dynamics.

Essential knowledge 4.C.4: The

diversity of species within an ecosystem may influence the stability of the ecosystem.